Diuretics, Potassium, Glucose Intolerance, and CVD Risk
What are the implications of differences in “new diabetes”?

• Keep in perspective in context of CVD differences observed in ALLHAT.

• Determine long-term morbidity/mortality consequences of thiazide-associated diabetes: observational studies/ALLHAT follow-up.

• Determine preventability/reversibility:
 --Weight control, increased physical activity
 --Maintain potassium balance

• Test combined regimens for reducing risk of DM.
ALLHAT Diabetics & Nondiabetics
Lisinopril/Chlorthalidone

Relative Risk and 95% Confidence Intervals

<table>
<thead>
<tr>
<th>Condition</th>
<th>Diabetics</th>
<th>Nondiabetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHD</td>
<td>1.00 (0.87, 1.14)</td>
<td>0.99 (0.88, 1.11)</td>
</tr>
<tr>
<td>Mortality</td>
<td>1.02 (0.91, 1.13)</td>
<td>1.00 (0.91, 1.09)</td>
</tr>
<tr>
<td>Stroke</td>
<td>1.07 (0.90, 1.28)</td>
<td>1.23 (1.05, 1.44)</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>1.22 (1.05, 1.42)</td>
<td>1.20 (1.04, 1.38)</td>
</tr>
<tr>
<td>Combined CVD</td>
<td>1.08 (1.00, 1.17)</td>
<td>1.12 (1.05, 1.19)</td>
</tr>
<tr>
<td>ESRD</td>
<td>1.17 (0.87, 1.57)</td>
<td>1.05 (0.74, 1.48)</td>
</tr>
</tbody>
</table>

There is no difference in treatment group effect by baseline history of diabetes.
There is no difference in treatment group effect by baseline history of diabetes.
What are the implications of differences in “new diabetes”?

- Keep in perspective in context of CVD differences observed in ALLHAT.
- **Determine long-term morbidity/mortality consequences of thiazide-associated diabetes:** observational studies (+ ALLHAT follow-up*).
- Determine preventability/reversibility:
 -- Weight control, increased physical activity
 -- Maintain potassium balance
- Test combined regimens for reducing risk of DM.

*Forthcoming data.
Diabetes on AHT & CHD risk: Samuelsson 1996

- 686 HT men treated with thiazide &/or β blocker, followed 15 yrs for RF’s, up to 22 yrs for NFMI or CHD death (133 events).
- Diabetes at baseline signif. associatd with CHD--RR 2.1 (1.1, 4.1), but incident diabetes was not—RR 1.5 (0.4, 6.0).
- No results reported separately by drug class. (At 10 yrs only 10% on thiazide but not β blocker.)

Glucose change on AHT and risk of MI: Dunder 2003

- 291 treated HT on thiazide &/or β blocker (66 on thiazide without β blocker) versus 1358 untreated men (mean BP 128/80).
- From age 50 to 60, FBG↑ 0.44 mmol/l more in HTs. (↑BMI 0.66 vs 0.46, p=0.07)
- MI incidence (253 events) after age 60—23.0% (HT) vs 13.5% (NHT) (p<0.001)

ΔFBG & MI (Dunder 2003), continued

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Treated HT Unadjusted RR per 1 S.D. (95% CI)</th>
<th>Non-HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL FBG</td>
<td>1.04 (0.83, 1.28)</td>
<td>1.16 (1.01, 1.31)</td>
</tr>
<tr>
<td>Δ FBG</td>
<td>1.37 (1.16, 1.59)</td>
<td>1.14 (0.98, 1.32)</td>
</tr>
<tr>
<td>BL SBP</td>
<td>0.99 (0.75, 1.30)</td>
<td>1.27 (1.06, 1.50)</td>
</tr>
<tr>
<td>Δ SBP</td>
<td>0.96 (0.75, 1.22)</td>
<td>1.25 (1.07, 1.46)</td>
</tr>
</tbody>
</table>

Adjusted RR per 1 S.D. (95% CI)

| Δ FBG | 1.50 (1.25, 1.78)* | 1.04 (0.86, 1.24)# |

*Δ SBP NOT INCLUDED #Δ SBP INCLUDED
New diabetes and CVD risk: Verdecchia 2004

- 795 treated HTs, median FU 6 yrs.
- Diuretic rx (low-mod dose HCTZ or CLTD) independently predictive of new diabetes.
- Adjusted* RR (95% CI) of CVD-renal event (n=63)
 --BL DM, 3.57 (1.65, 7.73)
 --New DM, 2.92 (1.33, 6.41)
- Results for specific regimens not given, & only 11% on diuretic/β blocker alone.

What are the implications of differences in “new diabetes”?

• Keep in perspective in context of CVD differences observed in ALLHAT.
• Determine long-term morbidity/mortality consequences of thiazide-associated diabetes: observational studies/ALLHAT follow-up.
• Determine preventability/reversibility:
 --Weight control, increased physical activity
 --Maintain potassium balance
• Test combined regimens for reducing risk of DM.
DPP: Incidence of Diabetes

- **Placebo (n=1082)**
- **Metformin (n=1073, p<0.001 vs. Placebo)**
- **Lifestyle (n=1079, p<0.001 vs. Metformin, p<0.001 vs. Placebo)**

Risk reduction
- **31% by metformin**
- **58% by lifestyle**
What are the implications of differences in “new diabetes”?

- Keep in perspective in context of CVD differences observed in ALLHAT.
- Determine long-term morbidity/mortality consequences of thiazide-associated diabetes: observational studies/ALLHAT follow-up.
- Determine preventability/reversibility:
 -- Weight control, increased physical activity
 -- Maintain potassium balance
- Test combined regimens for reducing risk of DM.
Hypotheses

• Glucose intolerance/hyperglycemia ("dysglycemia") with thiazide use largely attributable to potassium depletion.
• Dysglycemia correctable/preventable by K+ repletion/maintenance.
• Any ↑ CVD risk with thiazide-associated dysglycemia attenuated by K+ repletion.
Potassium and glucose: Types of evidence

- 5 small (total N=42) depletion studies
 -- Normal human subjects
 -- K+ ↓ by diet, diuretic, or cation exchange
 -- Short-term follow-up (10 d – 6 wk)
- Long-term observational studies in treated hypertensive patients.
- Secondary analyses of clinical trials.
- Missing: specifically designed RCTs.
First clinical study: Saglid, 1961

• 3-period sequential design (11-14 days).
• 5 healthy young men on prepared diet.
• Combined glucose tolerance (GT)/insulin responsiveness test before potassium depletion via K+ exchange resin, right afterward, and following recovery.
• Results: reduced GT followed by recovery.
• No insulin resistance (IR).

Other clinical studies (I)

• Rapoport 1964
 --16 subjects with + family history or IFG
 --In 7, CTZ rx→↓GT in week 1, normalized with K+ repletion during week 2.

• Gordon 1973
 --In 5/5 healthy MF, 2 wks K+ depletion→↓GT; 2 wks K+ repletion normalized 4/5.
 --Mechanism: delayed INS release, no IR.

Other clinical studies (II)

• Rowe 1980
 -- 7 healthy M, low K+ intake + resin, for 1 week.
 -- Mild (mean 5%) depletion of total K+ \rightarrow ↓GT proportional to ↓INS release; no IR.

• Helderman 1983
 -- 9 healthy men, 100 mg HCTZ for 10 days.
 -- In 7, also KCl (80 meq then adjusted for losses) \rightarrow no changes in GT, INS sensitivity, etc.
 -- In 2, no KCl \rightarrow sig. hypokalemia, ↓GT, ↓β cell rsp

HCTZ, potassium, & insulin sensitivity: Pollare 1989

- RCT of HCTZ, 25-50 mg, vs captopril, 50-100 mg, in XO design of 4-mo periods.
- FBG & INS levels ↑ in HCTZ gp compared with placebo period, & with captopril.
- INS Sensitivity by euglycemic clamp ↓ 15% with HCTZ, ↑ 19% with captopril.
- Correlation with change in serum K+ (r = -0.24) ns; total body K+ not measured.

Long-term study of treated hypertensives: Murphy 1982

- 34/137 (1-yr cohort) patients on high-dose thiazides with 4 GTTs over 14 years.
- 6→diabetes (3 with initial IGT), 7→IGT.
- No weight gain; no diff. by β blocker use.
- Persistently low K+ assoc. with IGT
 --<3.6 mm/l x 3→↑ 2h gluc by 2.7 mm/l
 --3.6+ mm/l x 3→↑ 2h gluc by 0.1 mm/l
- 7 mo post-thiazide, FG↓10%, 2h gluc ↓25%

Long-term study of treated hypertensives: Andersson 1991*

- 53 pts randomized to 2.5-5 mg BFMZ, with 8-16 meq KCl.
- In exams at 1 (n=53), 6 (n=49), and 10 years (n=45):
 --Mean serum K+ 4.0-4.2 meq/l at each visit, no ↓ total body K+.
 --No deterioration on OGTTT overall, only one patient developed DM.

*1 arm of RCT described in Bergland 1986.

EWPHE Sub-study: Amery 1978

- Placebo-controlled RCT in pts 60 and over
 - HCTZ, 25-50 mg/triamterene, 50-100 mg
 - FBG@1 (n=119), 2 (48), 3 (24) yrs, +/-GTT
- Effects on glucose clearest @ 2 years
 - Net FBG↑ of 12.7 mg/dl, ↑GTT “AOC”
 - Δglucose/ΔK+ correlation: ≈ - 0.4
 - No effects @ 1 yr, ↑FBG only @ 3 yrs
- Only 2 pts treated for new DM in each group

EWPHE Substudy, contin.

<table>
<thead>
<tr>
<th>Range of (\Delta K^+) @ 2 yrs</th>
<th>(\Delta FBG) (n) @ 2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.5 to -0.4</td>
<td>Diuretic: +14.1 (9), Placebo: +5.4 (5)</td>
</tr>
<tr>
<td>-0.3 to +0.2</td>
<td>Diuretic: +6.4 (9), Placebo: -3.1 (14)</td>
</tr>
<tr>
<td>+0.3 to +2.5</td>
<td>Diuretic: +5.3 (3), Placebo: -8.0 (7)</td>
</tr>
</tbody>
</table>
Potassium depletion appears to be a major intervening factor between thiazide treatment and dysglycemia.

• Evidence is incomplete; no RCT tested dysglycemia prevention by adequate K+ management.

• Both reduced insulin release and decreased insulin sensitivity have been demonstrated; findings not consistent.
Evidence conflicting re thiazide-associated dysglycemia increasing CVD risk.

- Positive studies do not distinguish diuretics from other drugs in regimen.
- Most DM occurring during thiazide rx is not caused by thiazide.
- RR may be attenuated by fluctuating K+ status; further analyses needed.
More attention than is often given to preventing or reversing hypokalemia is warranted, especially in patients at risk of diabetes.
Diuretics, Potassium, Glucose
Implications for Research

Well-designed randomized trials comparing various thiazide-based regimens for effects on potassium balance and glucose tolerance are needed.